Effect of simulated emergency skills training and assessments on the competence and confidence of medical students

I Treadwell, DCur, HED

Skills Centre, Sefako Makgatho Health Sciences University (formerly Medunsa Campus of the University of Limpopo), Pretoria, South Africa

Corresponding author: I Treadwell (ina.treadwell@gmail.com)

Background. At Medunsa, Pretoria, South Africa, the training of final-year medical students includes the management of simulations that incorporate, inter alia, the following emergency skills: cardiopulmonary resuscitation (CPR), defibrillation, airway suctioning, oropharyngeal airway placement, endotracheal intubation and bag-valve-mask ventilation. Other than CPR, all emergency training of the 2012 student group was by means of apprenticeship in clinical rotations. Therefore, there was no evidence of the students’ competence or confidence with regard to their performance of emergency skills.

Objectives. To explore the effect of simulated skills training and assessments on medical students’ competence and confidence when using the skills required to manage clinical emergencies.

Method. A one-group pretest post-test quasi-experimental design was used, with a convenience sample (n=82) comprising final-year medical students from 3 of the 6 annual Family Medicine rotations. The participants’ competence (knowledge and selected emergency skills as per curriculum) and confidence were assessed before training. The intervention comprised training in relevant theory, demonstrations and supervised hands-on practice. The post-training assessments were a repeat of the pretraining assessments.

Results. The improvement in participants’ confidence and competence levels when performing all the emergency skills on completion of the demonstrations and hands-on practice was highly significant (p ≤0.001). Participants were unanimous in their opinion that pre-assessments had enhanced their learning experience.

Conclusions. The strategy of teaching/learning and assessment of emergency skills in simulation was highly effective in enhancing the competence and confidence of medical students when managing a clinical emergency. However, students appeared to be overconfident, which could be ascribed to ignorance, and possibly indicates that feedback during training should be improved.

Growing evidence validating medical simulation as an educational tool has promoted its use beyond the instruction of physicians-in-training, and skills centres have become an established part of training for healthcare professionals. Clinical skills centres provide students with the opportunity to practise clinical techniques on manikins and simulators in a safe environment, without affecting the quality of patient care. This has changed the centuries-old approach to learning medical procedures by first practising on a patient, to one where competency is first demonstrated on a simulator. Simulation training, especially in emergency skills, is designed in such a way that healthcare providers can learn from practising in a situation that they are likely to encounter. It ensures that patients are not put at unnecessary risk by exposure to novice or out-of-practice caregivers, and is also conducive to the conducting of objective assessments.

There is considerable debate on how accurately students assess their own competence. Several studies have shown that medical students’ self-perceived competence correlates poorly with objectively assessed competence. Apart from inadequate self-assessment skills, biased self-evaluation in applied settings can also be ascribed to the overconfidence phenomenon. "We don't know what we know, but we are confident we do … Not only are we wrong, but we are confident that we are right!" A more serious problem that has been identified is that individuals at the lowest levels of mastery lack the metacognitive understanding of what actually constitutes mastery, leading them to greatly overestimate their own skills.
Competence and confidence are terms used for expressing beliefs about one's ability to perform an activity. Confidence refers to self-assurance arising from an appreciation of one's own abilities,
while in this study competence refers to the ability to perform a clinical skill successfully or efficiently. Competence can, however, be thwarted by a lack of confidence; however, misguided overconfidence in professional capabilities may have serious professional and malpractice consequences. Clinical experience and the level of confidence have no predictive value in performance assessments when using standardised simulated scenarios. As self-confidence is not a reliable indicator of skills competence, it is important to measure both confidence and competence.

Final-year medical students have a sound theoretical knowledge of emergency procedures, but how confident and competent are they in performing these procedures?

**Objective**

The objective of this study was to explore the effect of simulated skills training and assessments on final-year medical students’ competence and confidence in performing skills required to manage clinical emergencies.

**Method**

The study was conducted at the Skills Centre at Medunsa. The population of MB ChB VI students (N=176) was divided into 6 groups that rotated, as per curriculum, through 6 blocks of various disciplines during the year. A convenience sample (n=82) was used, comprising all the consenting students from 3 of these groups during their Family Medicine rotation. Ethical clearance was granted by the Medunsa Research and Ethics Committee and informed consent was obtained from participants.

A one-group pretest post-test quasi-experimental design was used to determine the effect of skills training and assessment on students’ competence and confidence in performing emergency procedures. Pretraining assessments of participants’ competence (knowledge and selected emergency skills as per curriculum) and confidence were administered. The intervention comprised 3 training and practice sessions of 30 minutes each: (i) adult CPR and defibrillation; (ii) adult endotracheal intubation; and (iii) resuscitation of a paediatric patient (CPR, airway suctioning, placement of an OPA, and BVM ventilation). Three groups, each comprising 9 - 10 students, rotated through the 3 stations, each manned by 2 lecturers who supervised the students and, by implication, provided them with feedback.

The post-training assessments were a repeat of the pretraining assessments. Pre- and post-training assessments were conducted on the same day to minimise the threat of maturation and history. To prevent social desirability bias the questionnaires were administered by the researcher, and responses to questionnaires were not accessible to the lecturers.

The pre- and post-training questionnaires comprised a 4-point Likert scale for self-report of confidence levels in performing 6 skills: CPR, clearing the airway by suctioning, placement of an OPA, endotracheal intubation, BVM ventilation and defibrillation. A statement on the effect of skills assessment prior to the teaching session was added to the post-training questionnaire.

The multiple-choice questions (MCQ) test, used before and after the training, comprised questions relevant to the range of skills. The test was compiled and verified by 4 lecturers involved in emergency care training. The Objective Structured Clinical Examination (OSCE) assessment tools were compiled and tested to assess objectively the skills performed at each of the 3 OSCE stations. A pilot study with 43 students in the first Family Medicine rotation of 2012 was conducted to determine the viability of the instruments and timing of the activities. These results were not included in the study.

**Results**

The results of the MCQ test, questionnaires and OSCE were captured on an Excel spreadsheet. The test and OSCE results before and after the teaching sessions were compared using Fisher’s exact test. All statistical tests were two-sided and p-values ≤0.01 were considered significant.

The mean scores of the pre- and post-training tests and OSCE assessments, the differences (improvement) and significance thereof are shown in Table 1.

The responses to the 4 categories of the Likert scale were summarised by frequency counts and percentages. The pre- and post-training percentages of ‘competent’ outcomes (a combination of responses in category 1 (very confident) and category 2 (confident)) were compared using Fisher’s exact test. The mean scores of the pre- and post-training confidence

### Table 1. Differences in the mean scores of pre- and post-training assessments (n=82)

<table>
<thead>
<tr>
<th>Assessments</th>
<th>Training</th>
<th>Mean score pretraining, %</th>
<th>Mean score post-training, %</th>
<th>Difference, %</th>
<th>Significance, p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCQ test</td>
<td>42</td>
<td>64</td>
<td>21</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>OSCE station 1</td>
<td>Paediatric resuscitation</td>
<td>23</td>
<td>74</td>
<td>51</td>
<td>0.0001</td>
</tr>
<tr>
<td>OSCE station 2</td>
<td>CPR and defibrillation</td>
<td>19</td>
<td>81</td>
<td>62</td>
<td>0.0001</td>
</tr>
<tr>
<td>OSCE station 3</td>
<td>Endotracheal intubation</td>
<td>16</td>
<td>52</td>
<td>37</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

### Table 2. Differences in pre- and post-training confidence levels in performing emergency skills (n=82)

<table>
<thead>
<tr>
<th>Skill</th>
<th>Confidence pretraining, %</th>
<th>Confidence post-training, %</th>
<th>Difference, %</th>
<th>Significance, p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airway suctioning</td>
<td>66</td>
<td>100</td>
<td>34</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Placement of OPA</td>
<td>33</td>
<td>99</td>
<td>66</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>BVM ventilation</td>
<td>81</td>
<td>100</td>
<td>19</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Endotracheal intubation</td>
<td>30</td>
<td>94</td>
<td>64</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>CPR</td>
<td>87</td>
<td>100</td>
<td>13</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Defibrillation</td>
<td>33</td>
<td>96</td>
<td>64</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>

### Table 3. Value of pretraining assessment (n=82)

<table>
<thead>
<tr>
<th>Value of OSCE</th>
<th>Strongly disagree, %</th>
<th>Disagree, %</th>
<th>Agree, %</th>
<th>Strongly agree, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Created awareness</td>
<td>0</td>
<td>0</td>
<td>9</td>
<td>91</td>
</tr>
<tr>
<td>Enhanced learning</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>88</td>
</tr>
</tbody>
</table>
levels, the differences (improvement) and significance thereof are given in Table 2.

Participants were unanimous (combination of category 1 (strongly agree) and category 2 (agree)) in their opinion that the pretraining OSCE had made them aware of their learning needs and the OSCE experience had enhanced their learning during the teaching session (Table 3).

Discussion
The lowest mean OSCE score was for endotracheal intubation (16% pretraining and 52% post-training). The medical students seem to find this emergency skill the most problematic. The literature shows that medical graduates feel inadequately prepared for performing an endotracheal intubation and it is recommended that more emphasis be placed on training medical students in this skill.10-11

The improvement of participants’ competence in performing emergency skills in the post-training OSCE was highly significant (p<0.001). This improvement corresponds to the findings in a study on residents’ improved competence in critical resuscitation procedures following an intensive simulation-based training programme.12

The literature reports low confidence levels and poor self-assessment of proficiency with regard to procedural skills among medical students entering clinical rotations. Their confidence improved significantly after a course in procedural skills.13-15 Our results likewise indicate a highly significant increase in confidence levels when performing each of the skills.

Students reported that the pretraining assessment (OSCE) improved their learning. This was similar to a report indicating that students who were evaluated prior to their training performed better in the post-training evaluation than a control group who had not been evaluated before training.16

A limitation of this study was that, although the students seemed alarmingly overconfident, the data were unsuitable to statistically determine the correlation between competence (scores in percentages) and confidence (4 categories). An additional limitation was that individual feedback, as implied during supervised hands-on sessions, was not monitored. The absence of a correlation between confidence and grades could be the result of a lack of appropriate and clear feedback.17 Students’ inflation of their abilities might be caused by ignorance rather than arrogance;18 such exaggerated judgements might be the result of an absence of feedback or failure to incorporate feedback into self-perception.19 Students tended to overestimate their own abilities. High-quality feedback10 could act as an antidote to such inaccurate self-assessment.

Conclusion
The strategy of teaching/learning and assessment of emergency skills in simulation proved highly effective in enhancing the competence and confidence of medical students in their management of a simulated clinical emergency. The improvement of students’ performance and confidence levels on completion of demonstrations and hands-on practice was highly significant (p<0.001).

The students appeared to be overconfident before engaging in this teaching/learning strategy. Their confidence levels escalated significantly on completion of the simulation, but were unfounded when compared with the proficiency scores. This confirms a finding previously reported in the literature that self-confidence is not a reliable indicator of skills competence.10

Recommendations
As students’ confidence levels were higher than their actual competence levels in the performance of emergency skills, it is recommended that training in the latter be expanded to include high-quality individual feedback. The effect of such individual feedback and its role in enhancing self-perception should be further researched.

Acknowledgements.
I would like to acknowledge the help and contributions of staff from the Skills Centre (H Havenga, M Theron, Y Uys, B Randa, K Kgasi, T Zana and T van Dyk), the Department of Family Medicine (Drs K Hlabyago, H Mabuza, S Nyalunga, C Barua, I Govender and J Ndimande) and the students who participated in this study.

References